
Symbolic Inversion of Control Relationships
in Model-Based Expert Systems

Final Report
GRANT NAG10-0045

Dr. Stan Thomas
Wake Forest University

Winston-Salem, NC

June 1988 - December 1988

h

I. Overview

We have looked at symbolic inversion from several perspectives. First, we looked
at a number of symbolic algebra and mathematical tool packages in order to evaluate their
capabilities and methods, specifically with respect to symbolic inversion. Second, we ported
the KATE system (without hardware interface) to a Zenith 2-248 microcomputer running
Golden Common Lisp. The interesting thing about our port is that it allows the user to
have measurements vary and components fail in a "non-deterministic" manner based upon
random values from probability distributions. This type of environment has potential for
using KATE for training purposes. Third, we thoroughly studied INVERT as currently
implemented in KATE, documented its operation, identified some of its weaknesses and
made some corrections to it. The corrections and enhancements are primarily in the way
that logical conditions involving AND's and ORs and inequalities are processed. In
addition, the capability to handle equalities was also added. It was found that INVERT
returned incorrect results on several classes of expressions. We also made suggestions
regarding the handling of ranges in INVERT. Last, we have looked at other approaches
to the inversion process and made recommendations as to how future versions of KATE
should perform symbolic inversion.

11. Computer Algebra and Symbolic Mathematical Software

It has been stated [Corn871 that "INVERT performs some of the same mathematical
manipulations that Artificial Intelligence programs such as Mathematica and TK Solver do,
but is less comprehensive." In order to explore further the nature of this similarity and to
gain a better understanding of the working of symbolic algebra and "mathematical tool"
programs, several such packages were acquired and compared. We will describe each of
the packages examined individually and then their relationship to INVERT as a group.

2

Computer algebra systems
a - x + b = c for x to yield x

Computer Algebra
perform symbolic mathematics, for example, solving
= (c-b)/a. In addition, most are capable of doing

numeric computations such as evaluating the equation above at specific values of a
and c. Their capabilities often include algebraic simplification, polynomial factorization

over the integers, solution of equations, integration of definite and indefinite integrals, and
differentiation in several variables. Perhaps the best known computer algebra system is
MACSYMA. Even though only widely available since 1983, its development began with
Project MAC in the late 1960s. Today, more than sixty different computer algebra systems
are known to exist [Hulz83]. We give a brief overview of three of the more widely used
computer algebra systems: MACSYMA, Maple, and MuMATH.

b

MACSYMA
MACSYMA [MACS83, Rand841 was originally developed at MI" to run on the

DEC-10 and was made available to other users via ARPANET. Since 1983, Symbolics
Corporation has been responsible for its distribution and it is now available on several
Motorola 68000 class machines, VAXEN, Symbolics and Honeywell. MACSYMA is a
large (8.7 Mbytes of Disk, 3.25 Mbytes of RAM) system written in LISP. It is commonly
accepted to be the most comprehensive and capable symbolic algebra package in existence
today, even though some of the newer systems have more capabilities in terms of graphics
and user interfaces. MACSYMA's capabilities for solving and simplifying equations are

enormous but its forte is in the areas of integration, differentiation, and differential
equations.

MaDle
Maple [Char83, Char841 was developed at the University of Waterloo to be a

compact, portable computer algebra system to be used on microcomputers in educational
environments. It requires modest resources (3.1 Mbytes of Disk, 100 Kbytes of RAM) but
is not really a stand-alone system since it does not even have built-in editing facilities. In
spite of these constraints, it is capable of doing a wide variety of symbolic mathematics
such as factoring, differentiation, integration, computing limits and series, matrix

3

manipulations and solving systems of equations. In all of these areas, Maple is more
limited than MACSYMA. For example, Maple is not able to perform integration involving
inverse trigonometric functions while MACSYMA has that capability. Maple does not
currently solve ordinary differential equations.

MuMAm
MuMATH [Wilf82, Yun801 was the first symbolic algebra system developed for

microcomputers. It was developed in a LISP dialect MuLISP. Like Maple, MuMATH
requires only modest resources (600 Kbytes of Disk, 125 Kbytes of RAM), and like Maple,
it has limited capabilities relative to MACSYMA. It has facilities for factoring, solving
equations, integration and differentiation at the first-year calculus level. Perhaps the biggest
selling point for MuMATH is that, like MACSYMA, the knowledgeable user can build very
powerful tools by integrating the MuLISP language with the symbolic mathematical tools
built into the system.

Mathematical Tools
In the 80's a new breed of software tool has become available which we will call

"mathematical tools" for lack of a standard name for this type of software package.
Marketing techniques often try to sell these tools as computer algebra systems when they
are not. These tools are useful for solving systems of equations, plotting curves, evaluating
functions, derivatives and definite integrals, but they do very little or no symbol
manipulation. We will describe the capabilities of two such packages which we
examined: MathCAD from Mathsoft, and Eureka from Borland.

MathCAD
MathCAD [Math871 can be thought of as a scratchpad interface to a toolbox

containing those numeric and graphing tools which are most useful to the practicing scientist
or engineer. It can perform matrix operations, solve simultaneous equations and
inequalities, compute derivatives and integrals, perform regressions, spline curve fitting,
Fourier transforms and inverses and numerous other operations as long as the values
involved are all numeric in nature. For example, MathCAD has no trouble evaluating

4

even the most complex double or triple integral but cannot do anything with even the most
elementary indefinite integral. In general, MathCAD can only solve problems numerically,
hence all answers must be numeric, they cannot be symbolic. This extends even to

simplifying simple equalities such as 3 + x = 2*x - 4. There is no way to express even

this simple problem directly in MathCAD. The plotting facilities in MathCAD are excellent
and easy to use as is the overall user interface. It has built-in routines for many functions
including, among many others, Euler’s gamma function r(z), Kronecker’s delta function
S(xl,x2), and Heaviside’s step function O(X) and is a very useful tool for the applied
mathematician or engineer already using a microcomputer in their work.

Eureka
Eureka [Eure87] is Borland‘s competitor for MathCAD. It costs only about one-

third of the cost of MathCAD and probably has about one-half to two-thirds the

functionality. The interface is very familiar to those who have used other Borland products
but the system lacks the polish and professional touch of MathCAD. Given the overall
similarity between the two products, Eureka has little to recommend it other than price.

Some Conclusions

The world of computer symbolic algebra is a rich, deep area for mathematical and
computer science research [cf., Calm821. We have not touched upon those difficulties
here, only sampled some of the current products. All of the symbolic algebra packages
mentioned have much more capability for performing computer algebra than does
INVERT. Mathematically, the two are incomparable. The commercial products are
generally distributed as compiled products and their techniques can only be, with the
possible exception of MACSYMA, inferred or guessed. On the other hand, INVERT is
capable of working with logical relationships expressed in LISP which are inappropriate
for these other general-purpose systems. Is there anything to be learned from looking at
these general-purpose systems? I think the answer is yes. I came away from this part of
the project confident that INVERT is capable of handling the class of practical
mathematical problems it needs to handle and that it can be enhanced with other
capabilities as needed. Up to this point, most of the control functions handled by INVERT

5

are simple step functions or arithmetic expressions. Even non-monotonic and non-linear
relationships could be handled by an improved notation and convention for representing
ranges and multiple values in KATE. On the other hand, using these packages led me to
believe that KATE could be improved by incorporating the use of UNITS into the
computations carried out in INVERT. At the current time, the UNITS information stored
in an objects frame is only used for display purposes. It would not be too difficult to have
the operational routines in KATE such as INVERT process this information during
computations. As a simple example, there is currently no check to ensure that the system
is not adding feet and inches, or pounds and ounces. It may be argued that if the

knowledge base is correct and standard units are used, such checks are not needed, but unit
conversion checks could readily be implemented and would add additional integrity to
KATE.

111. INVERT Software Description

At the highest level, INVERT can be viewed as a function which when given an
equation and a variable solves the equation in terms of that variable. In the context of
the operation of KATE, the inversion process begins by assembling a symbolic formula
that expresses a sensor’s expected value in terms of some other controlling object. This
is done by composing an expression from the sensor’s STATUS or SOURCE-PATH or
SOURCE slot. The module INVERT then solves that expression for the controlling object
given an observed or expected value [Scar87].

The primary variables used in INVERT are:
The right hand side of the equation to be inverted.
The variable to be solved for.
The left hand side of the equation to be inverted. This is
usually a constant and if it is numeric, it is automatically
converted to floating point.
A sublist of RHS beginning with either the first appearance of
VAR in RHS at the top level or the first sublist of RHS
containing VAR at a lower level. FOUND is constructed by
using a variant of SOME to map the utility function DEEP-
FIND over RHS.

RHS -
VAR -
LHS -

FOUND -

6

FOUND2 - FOUND2 is similar to FOUND except that it is a sublist of
FOUND beginning with the second appearance of VAR in
RHS. It is computed using only the CDR of FOUND, not all
of RHS. A null value for FOUND2 indicates that VAR
appears only once in RHS. Well, that’s the way it is supposed
to work but it doesn’t quite do that. For a RHS like (+ (- X X)
3) with X as VAR, FOUND2 will be nil even though X appears
twice.

The following comments apply to these variables and their use:

It is assumed that VAR appears once in RHS (except for CONDs where
VAR may appear once in each COND clause but only in the first or last
term of the clause). This assumption points out one of the current
weaknesses in INVERT. Little or no standard simplification and
rearrangement of expressions is done. Granted, simplification can be time-
consuming but as KATE is used with larger and larger knowledge bases, this
kind of feature found in general-purpose symbolic algebra systems will
become necessary.

If no value of VAR can make the RHS equal the LHS, INVERT returns the
special value *INNOCENT*. ActualZy, I find the use of the special value
*INNOCENT to be very misleading and confusing as returned by IAW3RT. The
value *INNOCENT* ir sometimes returned to indicate that value of VAR
can sari@ the conditions of the inversion and in other situations it k returned
as a signal that &g value of VAR satirfies the conditions. I find this very
conjiuing.

A subrange value is returned as a 3-element list of the form (*pair* low-value
high-value). This is another criticism of the current version of INVERT. It
is too restrictive in its representation and handling of subranges. For
example, there is no standard way to represent the fact that VAR can take
on values in the range [0..3] OR [5..10]. In general, INVERT is sloppy about
handling closed versus open intervals but that is probably because the
measurements used are not themselves precise, often including tolerance
values.

The value returned by INVERT may be an unevaluated expression such as
(t 4 2). It is not clear why terms are not evaluated when constructed.

Execution Details
The function INVERT proceeds as follows. It first checks for special and trivial

cases such as null arguments or VAR not appearing within RHS. The recursion base case
of equal RHS and VAR values is checked for at this point. INVERT then checks for

7

special RHS values such as C O W S or an AND containing multiple occurrences of VAR.
These are handled separately. The arithmetic operators +, -, *, and / are then processed
by a recursive call to INVERT passing a new RHS which is the CAR of FOUND (the
first term containing VAR) and a new LHS constructed from the "inverse" arithmetic
operator from the first operator in the old RHS, the old LHS, and any other constants in
the old RHS. This recursive call creates a new LHS which wraps the inversion of the
operator currently under examination around the old LHS. Relational operators < I' and
">" are handled separately as are if, am$ or, not and ma. The remainder of this section
focuses on the handling of these special cases. .
COND's

To invert a COND, parameters consisting of a list of clauses, a VAR and LHS are
needed. The operation of DO-COND is extremely convoluted and difficult to follow. I
have studied it extensively and still do not understand what all of its special case
considerations are intended to do. The most typical operation of DO-COND is to go
through the list of COND clauses, looking for the first one containing VAR and whose
returned value is equal to the value of the LHS value. When such a clause is found, its test
condition is inverted recursively, seeking to find a value for VAR to make the value of the
test equal to LHS. If no satisfactory clause is found, *INNOCENT* is returned.

AND Clause Co ntaininq VAR Twice
If an AND contains more than one appearance of VAR, then it is handled by

overlapping the solutions of those terms in which VAR appears. As noted in a later section
dealing with examples of errors found in INVERT, this is one of those areas in which
INVERT can return incorrect answers because the value of the RHS is not considered in
the solution returned.

Ineaualitiea
To handle inequalities, three conditions are checked, the value of the LHS (called

EV-LHS), whether or not the VAR being solved for appears immediately after the
relational operator and whether the relation is less than or greater than. Less than and

a

greater than are the only two inequalities permitted. A simple boolean test of these three
conditions is performed and a value returned. The testing of inequalities is another
weakness of INVERT. The inequality is inverted solely in terms of VAR and no checking
is done on the relationship between other constants in the expression. Also, the form of
the expressions is unnecessarily restrictive, insisting that VAR appear as the first or last
item in the expression. Examples of these problems are shown in a later section.

IF-conditions
In order to invert an IF, the test condition, the THEN-part, the ELSE-part, the first

term containing VAR and the value of the LHS are used. The following tests are
performed and a value returned. If the VAR term and test condition are equal, and the
value of the LHS equals the THEN-part, then t is returned. If the VAR term and test
condition are equal, and the value of the LHS equals the ELSE-part, then nil is returned.
If the VAR term and the test are equal, *innocent* is returned. If the VAR term and the
THEN-part are equal and the test evaluates to true, then *innocent* is returned.
Otherwise, if the test evaluates to true then *innocent* is returned, otherwise the value of
the else part is returned.

IV. Comments about INVERT

The following comments regarding INVERT are the most important part of this
report as they illuminate several areas of weakness in the current operation of INVERT.
Some, but not all, of these criticisms have been addressed and corrected in a modified
version of INVERT submitted with this report. The comments are divided into two
sections. The first section describes situations where INVERT appears to work correctly,
that is, it does not appear to fail, but it return misleading or incorrect results. The second
section describes capabilities and kinds of problems that INVERT cannot currently handle
at all but that we think are practical and should be done. In all of these comments we
have tried to keep in mind the specialized environment in which INVERT operates and the
fact that INVERT is not meant to be a general-purpose symbolic algebra inversion routine.

9

On the other hand, we expect that in the near future the knowledge base upon which
INVERT relies may be machine generated or, at the very least, will be produced with less
attention to detail than the prototype knowledge bases we have seen. It is necessary that
INVERT be able to handle control relationships expressed in various forms and more
flexibly than it currently operates.

Shortcomings in INVERT
The following examples are designed to illuminate areas in which INVERT returns

erroneous, incomplete, or misleading results. Most of them have to do with inverting
logical quantities and relations. INVERT does a very good job of inverting algebraic
expressions containing the operators +, -, * and /. It is primarily in the realm of Boolean
or logical quantities that INVERT needs a new, consistent and well-founded approach.
The examples have been designed to illuminate general areas of weakness which we feel
could easily be encountered with the type of control relationships used in KATE’S
knowledge base. They have been kept as simple as possible in order to focus the reader’s
attention upon the class of problem being illustrated.

returns *innocent* implying that no value of x would cause the cond to return
3 when in fact any value of x between 5 and 10 will cause the cond to return
3. This is a simple example of a large class of problems which INVERT does
not handle correctly because its analysis does not probe deeply enough into
the structure and meaning of the LISP form being inverted.

2) (INVERT (cond ((c x 5) 1)
((> x 5) 2) 1

‘X
2)

returns *innocent* whereas

10

(INVERT '(cond ((< x 5) 1.0)
((> x 5) 2 - 0 1 1

'X
2)

correctly returns (*pair* 5 100). The only difference is the two decimal

points. The most efficient and simplest solution to this situation is to ensure
that all values which enter the KATE system, either through hardware
measurements or through the
If that cannot be guaranteed,
all numeric equality tests are

3) (INVERT I (< 1 X 10)
'X
t)

knowledge base be expressed in floating point.
then INVERT can be modified to ensure that
performed using "=" instead of equal.

returns (*pair* 1 100) when it should return (*pair* 1 10). The
documentation for INVERT states that it is not capable of handling an
inequality unless the Variable being solved for is at the beginning or end of
the list of values so in that sense this error is excusable. On the other hand,
INVERT should never return incorrect results without telling the user in
some way. Our revisions for INVERT permit the Variable of interest to be
any place in such a list of values for "<" or ">" so this problem can be
considered corrected.

4) (INVERT (and (< x 10)
(> X I) 1

'X
t)

returns (*pair* 1 10) just as it should. The alarming fact is that

(INVERT I (and (< x 10)
(> X I) 1

'X
n i l)

also returns (*pair* 1 10) which is blatantly incorrect. This is an example
of a large class of Boolean expressions for which the value of the Right Hand
Side, in this case nil, is not used in the inversion process. This situation must

11

be corrected in order to have any degree of faith in the results returned by
INVERT when any kind of logical expression is involved.
(INVERT I (< 1 5 x)

'X
t)

returns (*pair* 1 100) which is, once again, incorrect and misleading.

(INVERT I (+ 1 x 3 x)
'X
10)

returns 10 or whatever the last argument is. This is again caused by an input
which is not in a simplified form, but also another case in which the value
returned is incorrect and misleading.
(INVERT I (< x 10 5)

' X

t)

returns (*pair* 0 10) as the range of values for x which will make the
expression t when in fact no value of x can make the expression true.
(INVERT I (cond (and (> x 0.0) (< x 1.0)) 1.0)

(and (> x 1.0) (< x 2.0)) 2.0)
(and (> x 2.0) (< x 3.0)) 1.0))

'X
1.0)

returns (*pair* 0 1) which is not really incorrect but is only a partial solution.
This example illustrates the fact that INVERT is presently only able to invert
monotonically increasing or decreasing step functions. As we shall discuss in
a later section, KATE does not currently have a notation for representing
multiple subranges of an interval as would be required for the correct
inversion of this expression.

Desirable Capabilities for INVERT

The following comments are meant to point out areas where we feel INVERT needs
enhancement. We have limited this wish-list to areas we think are practical and might well
be encountered in new knowledge bases very similar to those we have seen. We will not

12

suggest, for example, that INVERT should be able to invert differential or integral
equations because it is apparently not necessary to do so in the control environment KATE
is expected to work in.

INVERT should be able to work with other relational operators in addition to <,
> and =. There is no obvious reason that INVERT should not handle less than or equal,
greater than or equal and not equal. In fact, the whole topic of working with intervals in
KATE needs to be clarified. There seems to be no distinction between open and closed
intervals in KATE, I assume this is because many measurements are analog in nature and
are, in fact, not expected to be exact. That approach may lead to problems in the future
as other components are encountered, perhaps digital in nature, in which exact equality
or inequality is significant.

A closely related criticism is that the only standard notation for representing
intervals in KATE is the "(*pair* low high)" notation. There are conceivably many
situations in which INVERT really needs to return a collection of subintervals and each
one may need to be identified as open, closed, half-open, etc. Developing a notation is
not complex but I will leave it to others to do so if the examples from the previous section
and these comments are sufficient arguments for its desirability. As a consequence of
working with collections of subintervals, the function OVERLAP will need to be rewritten.
Some work along these lines can be found in my modified code.

Just as the notation and handling of multiple intervals in INVERT is not fully
developed, the use of the special value *INNOCENT* also causes some difficulties, at least

for this investigator. It may well be that within the operation of KATE the following
comments are irrelevant, but we found situations in which the returned value of
INNOCENT could mean that either no value of the Variable of interest could satisfy the
conditions for inversion or it could mean that any value of the Variable satisfied the
conditions. These situations come up only in logical or relational expressions where the
truth or falsity of the expression is determined not by the Variable of interest but by other
constants or values in the expression. Thus, in some cases, No value of VAR could give the
expression the appropriate value, whereas in the other cases Any value would do. In both
of these cases, INVERT currently returns *INNOCENT*. These situations need to be
checked thoroughly to assure that they do not cause problems in the operation of KATE.

13

There are no facilities in INVERT for simplifymg expressions. Again, simplification
has not been necessary up until now but I think it will become more important as
knowledge bases are created by programs instead of by engineers. As an example, if asked
to invert an expression such as (+ 2 x X) for X, INVERT will return whatever value is

passed in as the Left Hand Side when in fact it should be able to easily simplify the
expression and then INVERT it. This is a simple example which would not really appear
in a knowledge base but if expressions are assembled by KATE and passed to INVERT,
it might be possible to generate similar problems where simplification would be necessary.
Unfortunately, simplification of algebraic expressions is time-consuming. At some point a
decision will have to be made on this trade-off between generality and speed.

The previous section of examples points out that INVERT currently does not
generally handle the inversion of lists very well when the Variable being solved for is not
at one end of the list. This is easy to fix and some cases have been covered in our
modifications to INVERT. Those examples also pointed to several classes of problems in
which the value of the right hand side is ignored in inverting logical expressions. This
situation must be fixed for inverting all classes of expressions, whether they be logical,
arithmetic or based on (in)equalities.

My final comment is really a question about system design. INVERT assembles
the inversion of an expression and returns it to ALT-COM. I cannot understand why
INVERT does not go ahead and EVALuate subexpressions as they are assembled rather
than returning an assembled expression which ALT-COM must then evaluate. This is a

minor point but one which aroused my curiosity when trying to understand how INVERT
works.

V. Modifications to DETECT

In the time available for this work, we made several modifications and enhancements
to the operation of INVERT. The Appendix contains code listings with modifications to
the version of INVERT we started with indicated. Some of the changes were
straightforward, are fully operational, and we recommend that they be incorporated into the

14

current working version of INVERT. Others are not fully operational but will give an
indication of how they might be realized in INVERT. We will describe each of these
modifications, evaluate its usefulness and point out potential problems.

A very simple modification which we incorporated into our code was to eliminate
the final, unnecessary, recursive call to INVERT when its work is completed. We found
that the recursive calls to INVERT often terminate by a test in the main COND statement
in INVERT of the form ((eq rhs var) lhs) . Noting that this final call was
unnecessary and, on many computer architectures, time-consuming, we tested these
conditions and conditionally returned lhs before executing the recursive call.

The function DO-INEQUALITY was modified to handle expressions in which the
VAR being solved for appears anywhere in the list of values being checked. For example,
our code can invert an expression such as (< 1 X 10) for X whether the expression

should be t or nil. In order to correctly evaluate such expressions, two primary changes
were made to DO-INEQUALITY. The first is that the value of the Left-Hand-Side is used
to determine whether to determine values of VAR which make the expression true or to
return the complement of those values. In order to do this, we used the convention of
expressing multiple intervals in the form "(*pair* low-value, high-value, ... low-value, high-
value,). The second change was in the way that the other values in the list, other than
VAR itself, were treated. These "constant" values are checked independently of the VAR
being solved for and then a value of the VAR itself is determined which will make the
expression either true or false, depending on the Left-Hand-Side.

The processing of conjunctive conditions was modified primarily by incorporating the
value of the Left-Hand-Side into the inversion. The modified code works the same as
previously if the Left-Hand-Side is true. If the Left-Hand-Side evaluates to nil, the range(s)
of solutions is complemented, again using the notation previously described for representing
multiple intervals.

The capability to invert expressions incorporating "=" was added to invert with all
the generality described for the operations above. For example, inverting
(= 2 X (- 4 2) 2) for x with the Left-Hand-Side equal to t returns 2 as a result,

whereas inverting the same expression for nil returns (*pair* 1 2 2 loo), indicating

any value other than 2 is a solution.

15

VI. Future Directions

Anyone familiar with the overall theory and operation of model-based expert system
for process control, and in particular KATE, understands the central role that expression
inversion plays. The purpose of this work was to understand how INVERT currently
operates in KATE, if possible, to improve INVERT, and to make recommendations as to
how future work on INVERT should proceed. We conclude this report with some very
general comments on future directions.

It is our conclusion that the choice, made several years ago, to have KATE perform
its symbolic inversion of control relationships dynamically at execution time was generally
a good decision. It has allowed KATE, the form of its knowledge base, and the interaction
between system components to evolve gradually just as any research project must. As

KATE moves from the lab into production it becomes critical that INVERT perform its job
efficiently, smoothly, but most of all, correctly. We have found and pointed out areas in
which correctness is not guaranteed. These problems must be corrected.

The organization of INVERT as a decision-tree based, recursive function is efficient
and a natural organization for parsing the kind of S-expressions encountered in control
relationships in KATE'S knowledge base. We looked into the possibility of organizing

INVERT along the lines of a theorem-prover, that is, using Unification as a pattern

matcher in order to solve for the Variable of interest. There are at least two reasons that

this avenue of research was not pursued further. The first is the existing investment in
INVERT. INVERT works correctly and efficiently for simple arithmetic expressions and
adding other arithmetic capabilities is not difficult. There is not enough potential gain in
switching to a theorem-proving approach at this point to justify the development effort.
The second factor is speed. For arithmetic expressions and step functions, which appear
to be the primary material for INVERT, the theorem-proving approach involves more
overhead than the prescriptive, decision-tree approach currently in use. If INVERT were
intended to be a general-purpose symbolic inversion program, there would be potential
advantages to a theorem-proving approach, but that is not the situation.

16

The final question we need to address is that of the efficiency and speed of
operation of INVERT. We do not know, in fact, how important this issue is or will become
as KATE is used with larger and more complex systems. We have no profiling data to
indicate that INVERT is a bottleneck in KATE'S operation but we do know that INVERT
is heavily used both in diagnostics and control and thus make the following comments
under the assumption that any speedup in INVERT is desirable. As far as the current
form of INVERT, we were only able to make very minor suggestions for improving speed.
In order to gain useful speed, the only approach we view as promising is to pre-compute
the inverse@) of an object at the time the frame for that object is defined and to attach
that symbolic inversion to the property list of the object. We do not recommend doing this
for all objects, only those whose control expressions have a small number (maybe < = 3)
of Variables which could possibly be solved for. This approach requires more storage but
would eliminate repeatedly constructing the symbolic inverse of an object at execution time.

APPENDIX

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

... ,,, This is a listing of those components of the file KDETECT.LSP
f f , which have been modified. These modifications are located in

(defun INVERT (rhs var xlhs taux found found2 constants

...
,,, ... \XATE\KDETECT.LSP

(lhs (if (numberp xlhs) (float xlhs) xlhs)))
(cond

((or (eq lhs '*innocent*) (eq rhs '*innocent*)) '*innocent*)
((null rhs) (error "in invert with nilt1) nil)
((eq rhs var) lhs)
((atom rhs) (error "in invert with an atom") rhs)
((sym-nlistp rhs)
((not (deep-find var rhs))
(error "in invert not deep found") '*innocent*)
((not (setq found (sym-some rhs #'(lambda (sub-rhs)

(deep-find var sub-rhs)))))
(error Ifin invert: no sub-term with the variable found") rhs)

((and (setq found2 (sym-some (cdr found) # (lambda (sub-rhs)
(deep-f ind var sub-rhs))))

(error ''-a is neither atom nor listt1 rhs))

(equal (car found) (car found2)))
(invert (car found) var lhs))

(do-cond (cdr rhs) var lhs))
((eq (car rhs) 'cond)

((and found2 (eq (car rhs) land))
;; Handling of I'and1' with 11found211 modified to use LHS value
(if lhs (overlap (mapcar # I (lambda (term)

(cond
((deep-find var term)
(invert term var t))

((eval term) t)
(t (list '*pair* 1. 0 .))))

(cdr rhs)))
(complement var (overlap :simplify-pairs

(mapcar #'(lambda (term)
(cond
((deep-find var term)
(invert term var t))

((eval term) t)
(t (list '*pair* 1. 0 .))))

(found2 (error It-% invert can't handle 'a: variable 'a appears
in more than one term" rhs var))

(t (setq constants (remove (car found) (cdr rhs)))

(cdr rhs) 1) 1) 1

>
>

>
>

>
>
>
>

;; Handling of recursive call modified
(setq nextlhs
(case (car rhs)

(+ (list I- lhs (join-constants I+ constants)))
(* (list I/ lhs (join-constants I * constants)))
(- (cond ((eq (car found) (cadr rhs))

(list I+ lhs (join-constants I+ constants)))
(t (list I- (join-constants I- constants) lhs

(list * lhs (join-constants * constants)))
(t (list '/ (join-constants I/ constants) lhs

))))
(/ (cond ((eq (car found) (cadr rhs))

)) I)
(< (do-inequality lhs rhs found constants var t))
(> (do-inequality lhs rhs found constants var nil))
;; Handling of @'=I1 added
(= (do-equality lhs rhs found constants var))
(not (list 'not lhs))
(and(cond((invert-eval(join-constants 'andconstants))

(or (cond((not(invert-eval(join-constants lor

lhs)
(t '*innocent*)))

lhs)

(statval lhs)
(quote lhs)
(cstatus lhs)
(a//d-cstatus (list 'inverse-a//d-cstatus lhs))
(plus-only (if (>= (invert-eval lhs) 0.)

(if (do-if (cadr rhs) (caddr rhs) (nth 4 rhs)

(max (if (>= (invert-eval lhs)

constants)))

(t '*innocent*)))

lhs
'*innocent*))

(car found) (invert-eval lhs)))

(invert-eval (join-constants 'max constants
1))
lhs '*innocent*))

(otherwise (error "-%invert can't handle the 'a
operatorw1 (car rhs)))))

(if (eq (car found) var)
nextlhs
(invert (car found) var nextlhs)))))

> ;; Handles processing of expressions beginning with =
> (defun DO-EQUALITY (lhs rhs found constants var &aux (ev-lhs (eval
> (boolify lhs))) others)
> (cond ((equal (setq others (eval (cons I= constants))) ev-lhs)
> (car constants))
> ((and ev-lhs (null others))
> *innocent*)
> (t (complement var (list '*pair* (eval (car constants))
> (eval (car constants)))))))

> ;; Modified to handle VAR anywhere in list
(defun DO-INEQUALITY (lhs rhs sublist constants var lessp

&aux (ev-lhs (eval (boolify lhs))) 2nd?)
(setq 2nd? (eq (car sublist) (cadr rhs)))

> (setq last? (equal sublist (last rhs)))
> (cond ((and 2nd? ; var appears at beginning of list of arguments
> (> (length constants) 1))
> (if (eval (cons (car rhs) constants))
> (invert (list (car rhs) (car sublist) (car constants))
> var lhs)
> I *innocent*))
> ((and last? ; var appears at end of list of arguments
> (> (length rhs) 3))
> (if (eval (cons (car rhs) constants))
> (invert (list (car rhs) (car (last constants))
> (car sublist)) var lhs)
> *innocent*))
> ((> (length rhs) 3) ; not first or last
> (setq predecessor (cadr
> (member (cadrsublist)(reverseconstants):test lequal)))
> (if (eval (cons (car rhs) constants))
> (if ev-lhs
> (overlap (list (invert (list(car rhs) (car sublist)
> (cadr sublist)) var lhs)
> (invert
> (list (car rhs) predecessor
> (car sublist)) var lhs)))
> (complement var (overlap (list (invert (list
> (car rhs)
> (car sublist)
> (cadr sublist))
> var t)
> (invert (list
> (car rhs)
> predecessor
> (car sublist))
> var t)))))
> *innocent*))

((or (and ev-lhs 2nd? lessp)
(and ev-lhs (not 2nd?) (not lessp))
(and (not ev-lhs) (not 2nd?) lessp)
(and (not ev-lhs) Znd? (not lessp)))

'(*pair* ,(lower-bound var) ,(car constants)))
(t '(*pair* ,(car constants) ,(upper-bound var)))))

> ;; Given a VAR, returns complement of the ranges passed in range
> ;; range can be of form (*pair* low high low high ...)
> (defun COMPLEMENT (var range)
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

(cond ((equal range '*innocent*) **innocent*)

(oddp (length range))
(eq (car range) **pair*)
(>= (length range) 3))

((and (listp range)

(setq range (sort (cdr range) I<=))
(setq result '(*pair*))
(if (< (lower-bound var) (car range))

(setq result (append result (list (lower-bound var)
(car range) 1) 1)

(POP range)
(do* ((nextlower (pop range) (pop range))

(nextupper (pop range) (pop range)))
((null nextupper)
(if (> (upper-bound var) nextlower)

(setq result (append result(1ist nextlower

result))
(upper-bound var))))

(setq result (append result (list nextlower
nextupper) 1) 1)

(t (error "COMPLEMENT cant handle -av1 range)
range) 1)

> ; Turn list of disjoint pairs into a flat list
> (defun SIMPLIFY-PAIRS (pairs)
> (if (equal pairs '*innocent*)
> '*innocent*
> (append (*pair*)
> (remove '*pair* (cdr (flatlist pairs)) :test lequal))))

REFERENCES

[Calm821

[Char831

[Char841

[Corn871

[Ewe871

[Hulz831

[MACS83]

[Math871

[Rand841

[Scar871

[Stein881

[Wilf821

[Yun801

J. Calmet, ed., Computer Algebra, Springer-Verlag, New York, 1982.

B. Char, K. Geddes, and G. Gonnet, "Maple User's Manual", University of
Waterloo Research Report CS-83-41, December, 1983.

B. Char, K. Geddes, and G. Gonnet, "An Introduction to Maple: Sample
Interactive Session", University of Waterloo Research Report CS-84-04,
January, 1984.

M. Cornell, "KATE Software Description", Unpublished Kennedy Space
Center Technical Report, January, 1987.

Eureka, Borland International, Scotts Valley, California, 1987.

J. vanHulzen, and J. Calmet, "Computer Algebra Systems", in Computer
Algebra: Symbolic and Algebraic Computation, ed. B. Buchberger, G. Collins,
and R. Loos, Springer-Verlag, New York, 1983.

MACSYMA Reference Manual, Version 10, Symbolics, December, 1983.

MathCAD, MathSoft Inc., Cambridge, Massachusetts, 1987.

R. Rand, Computer Algebra in Applied Mathematics: An introduction to
MACSYMA, Pitman Publishing, Boston, 1984.

E. Scarl, J. Jamieson, and C. DeLaune, "Diagnosis and Sensor Validation
through Knowledge of Structure and Function", IEEE Transactions on Systems,
Man, and Cybemt?tics, SMC-17(3), May/June 1987.

S. Steinberg, "Overview of Mathematical Symbol Manipulation", in C W
Quarterly, 1:3, Amsterdam, September, 1988.

H. Wilf, 'The Disk With the College Education", American Mathematical
Monthly, 89:1, January, 1982.

D. Yun, and D. Stoutmeyer, "Symbolic Mathematical Computation",
Encyclopedia of Computer Science and Technology, 15, Marcel Dekker, New
York, 1980.

